Differential Geometry IV: General Relativity

G. Moschidis9 Oct. 2024

- **5.1** Let \mathcal{M} be a differentiable manifold and ∇ a connection on \mathcal{M} .
 - (a) Show that there exists no (1,2)-type tensor field A on \mathcal{M} with the property that, in any local coordinate system (x^1,\ldots,x^n) on \mathcal{M}

$$A_{ij}^k = \Gamma_{ij}^k.$$

Hint: Check how Γ_{ij}^k transforms under changes of coordinates.

(b) Show that the torsion $T: \Gamma(\mathcal{M}) \times \Gamma(\mathcal{M}) \to \Gamma(\mathcal{M})$ of the connection ∇ , which is defined by

$$T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y],$$

is a tensor field.

(c) Let ∇ be a (possibly) different connection on \mathcal{M} . Show that the difference $\nabla - \bar{\nabla}$: $\Gamma(\mathcal{M}) \times \Gamma(\mathcal{M}) \to \Gamma(\mathcal{M})$ is also a tensor field. Deduce that, there exists a (1,2)-type tensor field A such that, in any given local coordinate system (x^1, \ldots, x^n) ,

$$A_{ij}^k = \Gamma_{ij}^k - \bar{\Gamma}_{ij}^k$$

where Γ_{ij}^k and $\bar{\Gamma}_{ij}^k$ are the Christoffel symbols of ∇ and $\bar{\nabla}$, respectively.

- 5.2 Let $\Psi: \mathcal{M}^n \to \mathbb{R}^{n+1}$ be an immersion such that $\Psi(\mathcal{M})$ is a *spacelike* hypersurface of (\mathbb{R}^{n+1}, η) and let $\bar{g} = \Psi_* \eta$ be the induced metric. Let (x^1, \ldots, x^n) be a local coordinate chart on \mathcal{M} . Compute the Christoffel symbols Γ^k_{ij} of the Levi-Civita connection associated to \bar{g} in the (x^1, \ldots, x^n) coordinates as functions of Ψ and its derivatives.
- **5.3** Let \mathcal{M} be a smooth manifold equipped with a connection ∇ . We can extend the connection ∇ to a map $\nabla : \Gamma(M) \times Ten_I^k(\mathcal{M}) \to Ten_I^k(\mathcal{M})$ by the requirements that
 - ∇ satisfies the Leibniz rule with respect to tensor products, i.e. for all $X \in \Gamma(M)$

$$\nabla_X (f \otimes g) = \nabla_X f \otimes g + f \otimes \nabla_X g,$$

 $-\nabla$ commutes with contractions, i.e.

$$\nabla_X(\mathrm{tr}A) = \mathrm{tr}(\nabla_X A).$$

Show that, in any local coordinate chart (x^1, \ldots, x^n) , if Γ_{ij}^k are the Christoffel symbols of ∇ then, for every 1-form ω :

$$(\nabla_{\frac{\partial}{\partial x^i}}\omega)_j = \partial_i\omega_j - \Gamma_{ij}^k\omega_k.$$

Moreover, for any (k, l)-tensor field T:

$$(\nabla_{\frac{\partial}{\partial x^{a}}}T)^{i_{1}\dots i_{k}}{}_{j_{1}\dots j_{l}} = \partial_{a}T^{i_{1}\dots i_{k}}{}_{j_{1}\dots j_{l}} + \Gamma^{i_{1}}_{ab}T^{bi_{2}\dots i_{k}}{}_{j_{1}\dots j_{l}} + \dots + \Gamma^{i_{k}}_{ab}T^{i_{1}\dots i_{k-1}b}{}_{j_{1}\dots j_{l}} - \Gamma^{b}_{aj_{1}}T^{i_{1}i_{2}\dots i_{k}}{}_{bj_{2}\dots j_{l}} - \dots - \Gamma^{b}_{aj_{l}}T^{i_{1}\dots i_{k-1}i_{k}}{}_{j_{1}\dots j_{l-1}b}.$$

EPFL- Fall 2024 Series 5

Differential Geometry IV: General Relativity

G. Moschidis9 Oct. 2024

5.4 Let $(\overline{\mathcal{M}}, \overline{g})$ be a Riemannian manifold (i.e. \overline{g} is positive definite) and let us define the Lorentzian manifold (\mathcal{M}, g) so that $\mathcal{M} = \mathbb{R} \times \overline{\mathcal{M}}$ and g is the product metric $g = -(dt)^2 + \overline{g}$; this means that, for every local coordinate chart (x^1, \ldots, x^n) on $\mathcal{U} \subset \overline{\mathcal{M}}$, if we extend it to a local coordinate chart (t, x^1, \ldots, x^n) on $\mathbb{R} \times \mathcal{U} \subset \mathcal{M}$ so that t is simply the projection on the \mathbb{R} factor, then

$$g = -dt^2 + \bar{g}_{ij}dx^i dx^j.$$

Show that a curve $\gamma:(0,1)\to (M,g)$ is a geodesic (for the Levi-Civita connection of g) if and only, in any local coordinate system $(t;x^1,\ldots,x^n)$ as above, if it can be written in the form

$$\gamma(s) = (t(s); \bar{\gamma}^i(s))$$

where $t(s) = \lambda_1 s + \lambda_0$ for some $\lambda_1, \lambda_0 \in \mathbb{R}$ and $\bar{\gamma} : (0,1) \to \overline{\mathcal{M}}$ is a geodesic of $(\overline{\mathcal{M}}, \bar{g})$.

5.5 In this exercise, we will prove that there exist compact Lorentzian manifolds which are **geodesically incomplete** (recall that, as a consequence of the Hopf–Rinow theorem in Riemannian geometry, every compact Riemannian manifold is geodesically complete). Consider the manifold $\mathcal{M} = \mathbb{R}^2 \setminus 0$ equipped with the metric

$$g = \frac{1}{u^2 + v^2} du dv.$$

- (a) Verify that (\mathcal{M}, g) is a smooth Lorentzian manifold and that the map $(u, v) \to (\lambda \cdot u, \lambda \cdot v)$ is an isometry for every $\lambda \neq 0$.
- (b) Consider the group of isometries $\Gamma = \{(u, v) \to (2^k u, 2^k, v), k \in \mathbb{Z}\}$. Show that the quotient space \mathcal{M}/Γ is a compact manifold. Show also that \mathcal{M}/Γ inherits a natural metric \tilde{g} from (\mathcal{M}, g) so that the quotient map $(\mathcal{M}, g) \to (\mathcal{M}/\Gamma, \tilde{g})$ is a local isometry.
- (c) Show that the map $(\mathcal{M}, g) \to (\mathcal{M}/\Gamma, \tilde{g})$ maps geodesics to geodesics. Compute the geodesic equation on (\mathcal{M}, g) and deduce that $(\mathcal{M}/\Gamma, \tilde{g})$ contains a geodesic $\gamma: (a, b) \to \mathcal{M}/\Gamma$ with $b < +\infty$ which cannot be extended beyond t = b.